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ECARES and Département de Mathématique

Avenue F.D. Roosevelt, 50

ECARES, CP114/04

B-1050, Brussels

Belgium

Circular and spherical data arise in many applications, especially in Biology, Earth Sciences

and Astronomy. In dealing with such data one of the preliminary steps before any further infer-

ence, is to test if such data is isotropic i.e. uniformly distributed around the circle or the sphere.

In view of its importance, there is a considerable literature on the topic. In the present work we

provide new tests of uniformity on the circle based on original asymptotic results. Our tests are

motivated by the shape of locally and asymptotically maximin tests of uniformity against gen-

eralized von Mises distributions. We show that they are uniformly consistent. Empirical power

comparisons with several competing procedures are presented via simulations. The new tests

detect particularly well multimodal alternatives such as mixtures of von Mises distributions. A

practically-oriented combination of the new tests with already existing Sobolev tests is proposed.

An extension to testing uniformity on the sphere, along with some simulations, is included. The

procedures are illustrated on a real dataset.
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1. Introduction

Directional statistics is a branch of Statistics that deals with observations that are direc-

tions or more generally observations lying on non-linear manifolds. In several applications

these observations lie on the surface of the unit circle S1 := {u ∈ R2,u′u = 1} or the

unit sphere S2 := {u ∈ R3,u′u = 1}; throughout v′ denotes the transpose of a vector

v ∈ Rp (similarly V′ denotes the transpose of a matrix V). Many applications of circular

or spherical statistics can be found in various scientific domains such as Astronomy (see,

e.g. Cuesta-Albertos et al., 2009; Faÿ et al., 2013), Biology (see, e.g. Batschelet, 1981;

Couzin et al., 2005; Giunchi and Baldaccini, 2004; Golden et al., 2017; Morellato et al.,

2010; Putman et al., 2014; Thomas et al., 2017) but also Geology, Medicine, Ecology.

To quote Landler et al. (2018), “Circular data are common in biological studies. The

most fundamental question that can be asked of a sample of circular data is whether

it suggests that the underlying population is uniformly distributed around the circle, or

whether it is concentrated around at least one preferred direction (e.g. a migratory goal

or activity phase)”.

When dealing with circular data, testing for uniformity or isotropy is therefore an

essential first step before doing any further inference. If isotropy is indicated for a given

sample, no modeling or estimation is needed, and the resulting sequence of observations

can be seen as having no preferred direction or as noise on S1. Thus the uniform dis-

tribution occupies a central role amongst all circular distributions and as a result there

is considerable literature on testing uniformity on the circle. Observations on the one

dimensional manifold S1 can obviously be seen as realizations of a random variable tak-

ing values on [0, 2π) that will be referred to as a circular random variable in the sequel.

Letting Θ1, . . . ,Θn, be a sequence of independently and identically distributed (i.i.d.) cir-

cular random variables, the most classical test of uniformity on the circle is the Rayleigh

(1919) test that rejects the null hypothesis at the nominal level α when

2n−1
( n∑
i=1

sin(Θi)
)2

+ 2n−1
( n∑
i=1

cos(Θi)
)2
> cα, (1)

where, for large samples, cα ≈ χ2
2;1−α with χ2

p;ν standing for the ν quantile of the chi-

square distribution with p degrees of freedom. The Rayleigh test is a very simple test

which is powerful to detect unimodal alternatives. However it is not uniformly consistent

in the sense that it is blind against some alternatives to uniformity.

Since then a lot of work has been devoted to the problem in particular to obtain

uniformly consistent tests. The Kuiper (1960) and Watson (1961) tests are the circular

versions of the classical Kolmogorov–Smirnov and Cramér–von Mises tests respectively.

Tests based on arc-lengths or spacings have been studied in Rao (1976). Beran (1969)

and Giné (1975) studied the very broad class of Sobolev tests; see Section 2 for details
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on Sobolev tests. For more information on these and other classical tests for uniformity

as well as for circular statistical analyses in general, the reader is referred to Mardia and

Jupp (2000), Jammalamadaka and SenGupta (2001) or Ley and Verdebout (2017). See

also a recent review paper on this topic by Garćıa-Portugués and Verdebout (2019).

Testing uniformity on the circle or on the sphere is still a very much studied prob-

lem: we mention Jupp (2001) who provided modifications of the classical Rayleigh test,

Feltz and Goldin (2001) who proposed partition-based tests on the circle, Figueiredo

(2007) who provided a comparison of various tests, while data-driven Sobolev tests for

uniformity are obtained in Bogdan et al. (2002) and Jupp (2008). Cuesta-Albertos et al.

(2009) proposed projection-based tests, Pycke (2010) obtained new Sobolev tests on the

circle, and Lacour and Pham Ngoc (2014) considered uniformity tests on the sphere for

data perturbed by random rotations. Jammalamadaka and Terdik (2019) used spherical

harmonics for various tests of symmetry including uniformity on S2, while Cutting et al.

(2017) studied tests of uniformity on high-dimensional spheres.

In general Sobolev test statistics of uniformity on the circle are based on weighted

or unweighted sums of a fixed number M of terms involving empirical trigonometric

moments. Here we show that the tests based on such unweighted sums of M terms are

locally and asymptotically optimal within a parametric model; see Section 3 for details.

However in order to obtain Sobolev tests that are uniformly consistent, it is well know that

M has to be arbitrarily large. Many papers including the recent paper by Pycke (2010)

considered weighted infinite sums of squared empirical trigonometric moments letting

M diverge to infinity; see Section 2 for details . Although Pycke (2010) used weights to

obtain converging series, the chosen sequences of weights converge slowly to zero in order

to provide uniformly consistent tests that detect multimodal alternatives well. Bogdan

et al. (2002) and Jupp (2008) used a different approach to reach uniform consistency.

Rather than letting M diverge to infinity they considered a data-driven selection of

M . While for large-M tests it seems to be a common belief that it is necessary to use

weighted sums in order to get asymptotically valid and uniformly consistent tests, we

show the contrary in the present work. We assume here that M := Mn is a sequence

of positive integers that diverges to infinity together with the sample size n. Inspired

by high-dimensional techniques we obtain an original asymptotic result for unweighted

sums of squared empirical trigonometric moments in this double asymptotic framework.

We also show that the resulting tests are uniformly consistent; see Section 4 for details.

Moreover a simulation study (see Section 5) indicates that our tests dominate all the

competitors under various important multimodal alternatives. In Section 6, a test that

combines the data-driven test of Bogdan et al. (2002) with the new test is proposed for

practical purposes while in Section 7 an extension of the main result to the sphere S2 is

obtained. A real–data example follows in Section 8. The proofs of the various results are

collected in the Appendix and in a supplementary material. The latter supplementary
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material also includes simulation results related to the proposed test on S2.

2. Characteristic function and Sobolev tests

Let Θ denote an arbitrary circular random variable with an absolutely continuous circular

distribution function FΘ(ϑ) := P(Θ ≤ ϑ), Θ ∈ [0, 2π) with respect to an arbitrary origin.

We wish to test the null hypothesis of uniformity H0 : FΘ(ϑ) = ϑ
2π , for all ϑ ∈ [0, 2π).

As already mentioned in the Introduction, the present problem plays a central role in

directional statistics. In our approach for testing uniformity we will make use of the

characteristic function of Θ which is defined for any integer m ≥ 1 by

ϕΘ(m) := E [cos(mΘ)] + iE [sin(mΘ)] =: αF (m) + iβF (m); (2)

ϕΘ(m) is also often called the mth trigonometric moment of FΘ in the circular setup;

in the sequel we also refer to (αF (m), βF (m)) as the mth trigonometric moments of FΘ.

It is well known that for circular distributions the characteristic function needs to be

defined only for integer values of the argument (see e.g. p.26 of Jammalamadaka and

SenGupta (2001) or Meintanis and Verdebout (2018)). Thus writing (α0(m), β0(m)) for

the mth trigonometric moments under the null hypothesis H0 of uniformity, we have that

α0(m) = β0(m) = 0 and consequently that α2
0(m) + β2

0(m) = 0 for any integer m ≥ 1.

Letting

αn(m) =
1

n

n∑
j=1

cos(mΘj) and βn(m) =
1

n

n∑
j=1

sin(mΘj) (3)

stand for the natural estimators of the trigonometric moments, the tests we study

throughout the paper reject the null hypothesis H0 for large values of test statistics

of the form

Sn,w = 2n

∞∑
m=1

(
α2
n(m) + β2

n(m)
)
w(m)

=
2

n

n∑
j,k=1

∞∑
m=1

cos(m(Θj −Θk))w(m), (4)

where w(m) is a sequence of non-negative weights. The test statistics in (4) are weighted

combinations of V–statistics that provide an important class of tests called the Sobolev

tests (see e.g. Garćıa-Portugués and Verdebout, 2019). In this particular context of testing

isotropy, Sobolev tests can be traced back to Beran (1969) and Rao (1972). Within this

class one finds the Watson test that is obtained by taking w(m) = m−2, m ≥ 1, which

shows power against any non-uniform alternative. Other tests belonging to the Sobolev

class include the tests due to Rothman (1972), Bingham (1974), Giné (1975) and Hermans
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and Rasson (1985) to cite only a few. Provided that
∑∞
m=1 w(m) < ∞, classical results

on V-statistics imply that Sn,w is asymptotically distributed as
∑∞
m=1 w(m)Ym, where

Y1, Y2, . . . , is a sequence of independent chi-square random variables with two degrees of

freedom.

Now the weights w(1), w(2), . . . in (4) can be given an intuitive interpretation. For

instance if one chooses w(1) = 1 and w(m) = 0 for all m ≥ 1, the resulting test is

the classical Rayleigh test in (1) which is powerful against unimodal alternatives; it is

indeed the uniformly most powerful invariant test against von Mises alternatives and

the locally most powerful invariant test against symmetric wrapped stable families (see

Jammalamadaka and SenGupta, 2001, Section 2.2.8), as well as the locally and asymp-

totically maximin test within a class of rotationally symmetric deviations (see Cutting et

al., 2017). For the definition of a maximin test, see the comment just above Proposition

3.1. However these alternative distributions are all unimodal. In general the coefficient

w(m) can be interpreted as the weight associated with the eigenfunctions cos(mϑ) and

sin(mϑ). Clearly the bigger the weight w(m), the better the resulting Sobolev test in de-

tecting differences involving the mth trigonometric moment. In particular the slower the

sequence w(m) converges to zero the better the resulting test will detect multimodal al-

ternatives. This is the motivation underpinning the two Sobolev tests obtained by putting

w(m) = m−1 and w(m) = am−1 (a < 1), respectively that have been suggested by Pycke

(2010). The tests in Pycke (2010) are shown to perform well against multimodal alter-

natives. As suggested there, natural choices for the weights w(1), w(2), . . . are weights

related to probability distributions on the set of positive natural numbers N0 := {1, 2, ...}.
In these cases the series Cw(ϑ) =

∑∞
m=1 cos(mϑ)w(m), yields the value of the real part

of the characteristic function corresponding to w(·) computed at the argument ϑ: for

example the geometric distribution/weight wa(m) = (1− a)am, m ≥ 1, leads to

Ca(ϑ) = (1− a)

(
1− a cosϑ

1− 2a cosϑ+ a2

)
, (5)

the positive Poisson distribution, the weight wa(m) = (1 − e−a)−1e−a(am/m!), m ≥ 1,

leads to Ca(ϑ) = (ea − 1)−1ea cosϑ cos(a sinϑ)− 1, or the logarithmic distribution while

wa(m) = c(am/m), m ≥ 1, with c = −(log(1−a))−1, leads to Ca(ϑ) = c log(1−2a cosϑ+

a2)−1/2.

3. Exponential model and optimal tests

In the present section we consider an absolutely continuous exponential family with

densities of the form

ϑ→ cκκκM exp(κκκ′Mβββ(ϑ)), (6)
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where βββ(ϑ) := (cos(ϑ), sin(ϑ) . . . , cos(Mϑ), sin(Mϑ)), κκκM := (κ1, . . . , κ2M ) ∈ R2M is

a vector of real parameters and c−1
κκκM :=

∫ 2π

0
exp(κκκ′Mβββ(ϑ))dϑ is a normalizing constant.

This exponential model that can be traced back to Maksimov (1967) has been studied in

Beran (1979) and Gatto and Jammalamadaka (2007). In the sequel this model is referred

to as the generalized von Mises model; κ1 > 0 and κ2 = . . . = κ2M = 0 yields the very

classical von Mises distribution. In the rest of the section we denote by P
(n)
κκκM ;M the joint

distribution of Θ1, . . . ,Θn, under density (6). In the exponential model (6) the score test

of uniformity on S1 is the score test forH0 : κκκM = 0 againstH1 : κκκM 6= 0 that is obviously

based on the firstM empirical trigonometric moments (αn(1), βn(1), . . . , αn(M), βn(M)).

More precisely the score test φ
(n)
M rejects the null hypothesis at the asymptotic nominal

level α when

S1,M := 2n

M∑
m=1

(
α2
n(m) + β2

n(m)
)
> χ2

2M ;1−α. (7)

Note that S1,M is an unweighted and truncated (at M) version of Sn,w in (4). The

asymptotic distribution of S1,M under the null hypothesis can easily be obtained since

a simple application of the Central Limit Theorem allows us to show that under the

null hypothesis each term 2n
(
α2
n(m) + β2

n(m)
)

is in the limit distributed as a chi-square

random variable with two degrees of freedom and that any pair 2n
(
α2
n(mi) + β2

n(mi)
)

and 2n
(
α2
n(mj) + β2

n(mj)
)
, i 6= j, is asymptotically independently distributed. In the

next result, we complement the existing results by showing that the test φ
(n)
M is also

locally and asymptotically maximin for testing H0 : κκκM = 0 against H1 : κκκM 6= 0 and by

computing the limiting distribution of S1,M under local alternatives. In this connection

recall that a given test φ∗ is called maximin in the class Cα of level–α tests for H0 against

H1 if (i) φ∗ has level α and (ii) the power of φ∗ is such that

inf
P∈H1

EP[φ∗] ≥ sup
φ∈Cα

inf
P∈H1

EP[φ].

In the following result we show that the test φ
(n)
M is locally and asymptotically maximin

against local alternatives P
(n)

n−1/2k
(n)
M ;M

, where k
(n)
M is a bounded sequence of R2M ; for a

precise definition of locally and asymptotically maximin tests, see, e.g. Chapter 5 of Ley

and Verdebout (2017).

Proposition 3.1. Fix M ∈ N0. For testing H0 : κκκM = 0 against H1 : κκκM 6= 0,

(i) the test φ
(n)
M is locally and asymptotically maximin and

(ii) under local alternatives P
(n)

n−1/2k
(n)
M ;M

, where k
(n)
M is a bounded sequence of R2M such

that kM := limn→∞ k
(n)
M , S1,M converges weakly to a chi-square random variable

with 2M degrees of freedom and non-centrality parameter ‖kM‖2/2.
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In Proposition 3.1, we show that φ
(n)
M is the locally and asymptotically maximin test

for H0 : κκκM = 0 against H1 : κκκM 6= 0. The following result enables the computation of

the local asymptotic power of the test φ
(n)
M under various local alternatives within the

Beran (1979) family.

Proposition 3.2. Fix (M,M ′) ∈ N2
0. Then

(i) under P
(n)

n−1/2k
(n)

M′ ;M
′

with M ′ > M and k
(n)
M ′ := (k

(n)
M , k

(n)
2M+1, . . . , k

(n)
2M ′)

′ a bounded

sequence of R2M ′ , S1,M is asymptotically chi-square with 2M degrees of freedom

and non-centrality parameter ‖kM‖2/2, where kM := limn→∞ k
(n)
M .

(ii) under P
(n)

n−1/2k
(n)

M′ ;M
′

with M ′ < M and k
(n)
M ′ := (k1, . . . , k2M ′)

′ a bounded sequence

of R2M ′ , S1,M is asymptotically chi-square with 2M degrees of freedom and non-

centrality parameter ‖kM ′‖2/2, where kM ′ := limn→∞ k
(n)
M ′ .

Note in particular that point (i) of Proposition 3.2 entails that if

kM = 0 and if limn→∞(k
(n)
2M+1, . . . , k

(n)
2M ′) 6= 0, the limiting distribution of S1,M un-

der the local alternatives in point (i) is a central chi-square with 2M degrees of freedom

so that the resulting test is blind to the corresponding alternatives while from Proposition

3.1 the optimal test S1,M ′ has a limiting power in the interval (α, 1).

To obtain uniformly consistent tests, that is tests that are consistent against any fixed

alternative, two possibilities naturally arise: the first one consists in providing a suitable

data-driven selection of M . As explained in the Introduction this first solution has been

studied in Bogdan et al. (2002) who provided a smooth test in which w(m) = 1, m ≤ M̂
and w(m) = 0, m > M̂ , where the threshold M̂ is data-driven; see also its multivariate

extension by Jupp (2008). The empirical selection procedure proposed by Bogdan et al.

(2002) is based on results in Ledwina (1994). In the next section we investigate a second

solution. More precisely we provide a new test based on the investigation under the null

hypothesis of the asymptotic behavior of a standardized version of the unweighted sum

S1,Mn
:= 2n

Mn∑
m=1

(
α2
n(m) + β2

n(m)
)
, (8)

when Mn →∞, as n→∞.

4. A new Sobolev test

In the present section, we provide a new test φ
(n)
MRV of uniformity on the circle. As

explained at the end of the previous section the test φ
(n)
MRV will be based on a standardized
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version of the quantity S1,Mn
in (8). More precisely we consider as test statistic the

standardized version

Sstand
1,Mn

:=
S1,Mn

− 2Mn

2
√
Mn

, (9)

of S1,Mn for which the following result provides the asymptotic null distribution as Mn →
∞ with Mn = o(n2), as n→∞.

Proposition 4.1. Let Mn be a sequence of integers such that Mn → ∞ with Mn =

o(n2) as n → ∞. Then, under H0, Sstand
1,Mn

converges weakly to standard normal random

variable as n→∞.

Proposition 4.1 shows that once S1,M in (8) is properly rescaled, it is possible to obtain

its asymptotic behavior with a large number Mn of weights w(m) that are equal to one

provided that Mn is not too large with respect to n. The resulting test φ
(n)
MRV rejects the

null hypothesis at the asymptotic level α when Sstand
1,Mn

> z1−α where zν stand for the

ν-quantile of the standard Gaussian distribution.

In order to illustrate numerically Proposition 4.1, we generated 5000 samples of

uniform random vectors on S1 with various sample sizes n = 30, 100, 500, 1000. For

each replication, we computed the test statistic Sstand
1,M with various values of M =

30, 100, 500, 1000. In Figure 1 we provide standard Gaussian qq-plots of the resulting

5000 values of Sstand
1,M for any pair (n,M). In Figure 2 we provide the empirical type-I

risks (i.e., rejection rates under the null hypothesis) of the tests φ
(n)
MRV performed at the

nominal level .05 for any pair (n,M); more precisely letting (Sstand
1,M )k stand for the value

of Sstand
1,M obtained from the kth replication, k = 1, . . . ,K = 5000, we computed

r
(.05)
n,M :=

1

K

K∑
k=1

I[(Sstand
1,M )k > z.95],

where I[.] denotes the classical indicator function. Obviously, a value close to .05 for r
(.05)
n,M

indicates a correct type-I risk (the expectation of the test under the null hypothesis) for

φ
(n)
MRV performed at the nominal level .05. While inspection of Figure 1 clearly reveals that

the Gaussian approximation is better when the sample size is greater than M , Figure 2

shows that in practice, the type-I risk of φ
(n)
MRV is not drastically influenced by the choice

of M . Indeed when M = 1000 and n = 30, the resulting empirical type-I risk of φ
(n)
MRV

is .068. Hence choosing M not too large with respect to n seems to be a good rule of

thumb in order to get an asymptotically valid test.

In the next result we show the uniform consistency of the test within a very natural

class of alternatives, also considered in Pycke (2010).
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Figure 1. Standard Gaussian qq–plots of Sstand
1,M for various values of n andM based on 5000 replications.
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Proposition 4.2. Let F denote a class of distributions with trigonometric moments

ϕΘ(m) = αF (m)+iβF (m), such that 0 <
∑∞
m=1

(
α2
F (m) + β2

F (m)
)
< +∞ for all F ∈ F .

Then the test φ
(n)
MRV is uniformly consistent within the class F .

In the next section we compare the empirical power of the test φ
(n)
MRV with that of

several competitors.

5. Power comparisons

The objective of the present section is to compare the empirical power of the proposed test

with several competitors. Before starting the description of the simulation schemes we

recall that a von Mises distribution with a density of the form ϑ→ cκ exp(κ cos(ϑ− µ)),

where µ ∈ [0, 2π) is a location parameter, κ > 0 is a concentration parameter and cκ is a

normalizing constant (as mentioned already note that the latter density with µ = 0 can

be obtained by setting βββ(ϑ) = cos(ϑ) in (6)). To perform our empirical comparison, we

generated N = 1, 500 samples of i.i.d. circular random variables

Θ
(ρ)
`;j , ρ = 1, . . . , 8, ` = 0, . . . , 3, j = 1, . . . , n = 100,

where the Θ
(1)
`;j ’s have a von Mises distribution with location 0 and concentration param-

eter `/6, the Θ
(ρ)
`;j ’s for ρ = 2, . . . , 4, are distributed as mixtures of the form

∑m
j=1 εjΘj

where εj := I(j−1)/m≤U≤j/m, with U ∼ unif[0, 1] and where Θj has a von Mises distribu-

tion with location 2π(j− 1)/m. The Θ
(2)
`;j ’s are obtained taking m = 4 and concentration

3`, the Θ
(3)
`;j ’s are obtained taking m = 8 and concentration 15` while the Θ

(4)
`;j ’s are ob-

tained taking m = 16 and concentration 50`. The Θ
(ρ)
`;j ’s for ρ = 5, . . . , 8 are distributed

as generalized von Mises random variables in (6); the Θ
(5)
`;j ’s are obtained taking M = 4

and κκκM = (`/9)12M (1k := (1, . . . , 1) ∈ Rk), the Θ
(6)
`;j ’s are obtained taking M = 8 and

κκκM = (`/10)12M , the Θ
(7)
`;j ’s are obtained taking M = 12 and κκκM = (`/12)12M while

the Θ
(8)
`;j ’s are obtained taking M = 16 and κκκM = (`/16)12M . The value ` = 0 always

yields a uniform distribution while the values ` = 1, 2, 3, provide distributions that are

increasingly away from uniformity.

The resulting rejection frequencies of the following tests, all performed at nominal level

5%, are plotted in Figures 3 and 4: the well-known Rayleigh test φ
(n)
Ray, the Pycke (2010)

test φ
(n)
Pyc based on h4 (see equation (10) in Pycke, 2010), the Bogdan et al. (2002) test

φ
(n)
Bog performed using the practical remarks of Section 5 of Bogdan et al. (2002), the Rao

spacings test φ
(n)
Rao (see Rao, 1976), the test based on Sn,w with Geometric distribution

weights in (5) with a = 3/4 and the test φ
(n)
MRV based on Sstand

1,Mn
performed with Mn = 30.
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The critical values used for the test based on Sn,w were computed numerically using 5000

replications.

Inspection of Figures 3 and 4 reveals first that all the tests respect the .05 nominal level

constraint and that they are therefore valid. As expected the Rayleigh test dominates all

the other tests in the von Mises case. The test based on Sn,w with geometric distribution

weights enjoys a nice global behavior while for mixtures of m ≥ 8 von Mises distributions

and for generalized von Mises distributions with M ≥ 8, the new test φ
(n)
MRV dominates

the competitors.

6. A new test for practical use

As shown in the simulation results of the previous section, the test φ
(n)
MRV based on Sstand

1,Mn

clearly behaves well when the alternative hypothesis is multimodal. On the other hand

it is not powerful against unimodal alternatives. Following the discussion at the end of

Section 2, this might have been expected. Another point that may be seen as an issue

in practice is the selection of Mn since a priori the asymptotic normality of Sstand
1,Mn

is

guaranteed for any choice of Mn as long as Mn = o(n2). For instance Mn = bnγc with

γ ∈ (0, 2) are possible choices. Clearly, the larger one selects Mn the more the test will

detect alternatives with a lot of modes. Unfortunately, taking Mn very large will decrease

the power of the test against unimodal alternatives. Therefore, in a sense, the selection of

the sequence Mn that diverges to∞ should be driven by the alternative which is arguably

unrealistic in practice. It is nevertheless exactly the same nice idea underpinning the data-

driven selection M̂ of M by Bogdan et al. (2002) and Jupp (2008). The fact that the

test φ
(n)
Bog is dominated by φ

(n)
MRV under multimodal alternatives theoretically comes from

the fact that as shown in Bogdan et al. (2002) and Jupp (2008) limn→∞ P[M̂ <∞] = 1

so that M̂ will diverge to infinity with probability zero. Now in practice the algorithm

proposed to compute the data-driven M̂ as explained in Bogdan et al. (2002) is as follows:

(i) Compute L(M) := S1,M − 2M log n for 1 ≤ M ≤ Mthr, where (quoting Bogdan

et al. (2002)), “in theory Mthr is ∞ but simulations suggest that in practice it is

sufficient to take Mthr = 10 for n ≤ 100”

(ii) Compute M̂ = argmax1≤M≤Mthr
L(M)

In a sense, the question of the selection of the threshold Mthr can be compared to the

question of selecting Mn in Sstand
1,Mn

since in theory Mthr has to be taken as +∞. Note

that Jupp (2008) suggested to take Mthr = 5 in practice. Discussing the selection of the

sequence Mn that diverges to ∞ is therefore a delicate issue. Again, the larger Mn, the

more multimodal alternatives the test will be able to detect but at the cost of giving up

power against unimodal alternatives.
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Figure 3. Empirical rejection probabilities of various tests of uniformity under various alternatives:
(Top Left) von Mises, (Top Right) mixture of four von Mises distributions, (Bottom Left) mixture of
eight von Mises distributions, (Bottom Right) mixture of sixteen von Mises distributions.



On Sobolev tests of uniformity on the circle with an extension to the sphere 13

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Gen.vM (4)

Ray
Pyc
Snw
MRV
Rao
Bog

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Gen.vM  (8)

Ray
Pyc
Snw
MRV
Rao
Bog

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Gen.vM  (12)

Ray
Pyc
Snw
MRV
Rao
Bog

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Gen.vM  (16)

Ray
Pyc
Snw
MRV
Rao
Bog

Figure 4. Empirical rejection probabilities of various tests of uniformity under various alternatives: (Top
Left) generalized von Mises distribution with M = 4, (Top Right) generalized von Mises distribution
withM = 8, (Bottom Left) generalized von Mises distribution withM = 12, (Bottom Right) generalized
von Mises distribution with M = 16.
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However, even with Mn being relatively small, the power of φ
(n)
MRV against unimodal

alternatives remains an issue. We propose here a new test that uses together the data-

driven selection of M explained above as well as the test φ
(n)
MRV. The idea underpinning

the new test finds its roots in the power enhancement principle studied in Fan et al.

(2015) and Kock and Preinerstorfer (2019). The new test φ̃(n) is based on a combination

of the two tests φ
(n)
Bog and φ

(n)
MRV given by

φ̃(n) := I
[M̃<Vthr]

φ
(n)
Bog + I

[M̃≥Vthr]
φ

(n)
MRV, (10)

with the natural number M̃ defined as M̃ := max1≤j≤n M̂j , where M̂j ∈ N0 is obtained

by performing the algorithm for the selection of M described above based on the sample

Θ1, . . . ,Θj−1,Θj+1, . . . ,Θn; that is leaving Θj out of the sample. The threshold Vthr ∈ N0

in (10) can be chosen by the practitioner. Any choice of Vthr yields a test with the correct

asymptotic size. Note that if Vthr is taken larger than Mthr in the algorithm above, φ̃(n)

is simply equivalent to φ
(n)
Bog while if Vthr = 1, then φ̃(n) is equivalent to φ

(n)
MRV. The idea

underpinning the test φ̃(n) is that if M̃ is small (smaller than Vthr), then φ̃(n) is equivalent

to φ
(n)
Bog. On the other hand if M̃ is larger than Vthr, φ̃

(n) is equivalent to φ
(n)
MRV. The

practical motivation of φ̃(n) is therefore to improve the power of φ
(n)
MRV under unimodal

alternatives (or alternatives with a small number of modes) or equivalently to improve

the power of φ
(n)
Bog under multimodal alternatives, while keeping its nice properties under

unimodal alternatives.

In order to illustrate the finite–sample properties of the test we performed the following

simulation exercise: based on samples of size n = 50, we performed the tests φ
(n)
Bog at level

.05 taking Mthr = 30 in the selection of M algorithm and the test φ
(n)
MRV at level .05 taking

Mn = 30. Note that we took here Mthr as large as Mn to perform a fair comparison.

We then performed the test φ̃(n) with Vthr = 5. We generated N = 1, 500 mutually

independent samples of i.i.d. circular random variables

Θ
(ρ)
`;j , ρ = 1, . . . , 4, ` = 0, . . . , 3, j = 1, . . . , n,

where the Θ
(1)
`;j ’s have a von Mises distribution with location 0 and concentration pa-

rameter `/4, while the Θ
(ρ)
`;j ’s for ρ = 2, 3, 4, are distributed as a mixtures of the form∑m

j=1 εjΘj already defined in Section 5. Specifically the Θ
(2)
`;j ’s are obtained taking m = 4

and concentration 6`, the Θ
(3)
`;j ’s are obtained taking m = 8 and concentration 25` and

the Θ
(4)
`;j ’s are obtained taking m = 12 and concentration 200`.

In Figure 5, we provide the empirical powers of the three tests: φ
(n)
Bog (orange curve),

φ
(n)
MRV (darkgreen curve) and φ̃(n) (blue curve). Inspection of Figure 5 shows that when

the number of modes under the alternative is low, the tests φ
(n)
Bog and φ̃(n) are equivalent;
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the blue curve and the orange curve cannot be distinguished in the top left and top right

plots. In such situations, φ
(n)
Bog and φ̃(n) dominate φ

(n)
MRV as expected. However, when

the number of modes is larger, φ
(n)
MRV dominates both φ

(n)
Bog and φ̃(n). Nevertheless, we

can see that φ̃(n) performs better than φ
(n)
Bog in both bottom left and right plots. On

the basis of this behavior of φ̃(n) and in view of the fact that there is no omnibus test

that is uniformly most powerful against all possible alternatives (see Janssen (2000), and

Escanciano (2009)), the combined test may seem a good compromise.

7. Extension to S2

In view of (4), the test statistic S1,Mn
in (8) may be interpreted geometrically in the

Hilbert space L2(S1, µ) of square-integrable real functions on S1 with respect to µ, the

uniform probability measure on S1 equipped with the inner product

〈f, g〉 :=

∫
S1
f(x)g(x) dµ(x)

for f, g ∈ L2(S1, µ). To this end note that a well–known orthonormal basis of L2(S1, µ) is

{
√

2em}m∈Z, where, in spherical coordinates, em(θ) := ei2πmθ or equivalently

em(θ) = (cos(mθ), sin(mθ)). With this in mind, let Em be the two dimensional sub-

space of L2(S1, µ) spanned by the orthonormal functions g1,m : θ →
√

2 cos(mθ) and

g2,m : θ →
√

2 sin(mθ) and consider a mapping t
(1)
m : [0, 2π] → Em that maps a random

angle Θi onto t
(1)
m (Θi) := g1,m(Θi)g1,m+g2,m(Θi)g2,m. Then standard properties of inner

products entail that S1,Mn can be rewritten as

S1,Mn =
1

n

n∑
i,j=1

Mn∑
m=1

〈t(1)
m (Θi), t

(1)
m (Θj)〉

=
1

n

∥∥∥∥∥
n∑
i=1

t
(1)
(Mn)(Θi)

∥∥∥∥∥
2

L2

, (11)

where the mapping t
(1)
(Mn) : [0, 2π] → L2(S1, µ) is defined as t

(1)
(Mn)(θ) :=

∑Mn

m=1 t
(1)
m (θ).

Therefore the geometric interpretation provided here finds its roots in the fact that the

space L2(S1, µ) admits a Hilbert sum decomposition L2(S1, µ) =
⊕∞

m=0 Em into pairwise

orthogonal subspaces Em that contain orthonormal functions.

Following Jupp (2008), Sobolev test statistics on Sp−1 with p ≥ 2 (or more generally

on Riemanian manifolds) can be obtained similarly by constructing an orthonormal basis

of L2(Sp−1, µ), where µ now denotes here the uniform probability measure on Sp−1. Such

orthonormal bases can be obtained via the eigenfunctions associated with the non-zero



16 S.R. Jammalamadaka, S. Meintanis and Th. Verdebout

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Von Mises

Bog
MRV
Phi

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Mix. vM (4)

Bog
MRV
Phi

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Mix. vM (8)

Bog
MRV
Phi

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ℓ

Mix. vM (12)

Bog
MRV
Phi

Figure 5. Empirical rejection probabilities of φ
(n)
Bog (orange), φ

(n)
MRV (darkgreen) and φ̃(n) (blue) under

various alternatives: (Top Left) von Mises distributions, (Top Right) mixture of four von Mises distri-
butions, (Bottom Left) mixture of eight von Mises distributions, (Bottom Right) mixture of twelve von
Mises distributions.
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eigenvalues of the Laplace operator ∆ acting on Sp−1. For more details on the Laplace

operator on closed smooth Riemanian manifolds, see for instance Giné (1975) and the

references therein. Mimicking the construction above on S1, denote by Em the space of

eigenfunctions Sp−1 → R corresponding to the m-th non-zero eigenvalue of the Laplacian

∆, with dimension dp,m := dim Em. There exists a well-defined mapping t
(p−1)
m : Sp−1 →

Em that can be written as t
(p−1)
m (u) :=

∑dp,m
i=1 gi,m(u)gi,m, where {gi,m}

dp,m
i=1 form an

orthonormal basis of Em. The function u 7→ t
(p−1)
(Mn) (u) :=

∑Mn

m=1 t
(p−1)
m (u) is a mapping

from Sp−1 to the Hilbert space L2(Sp−1, µ). Based on n observations U1, . . . ,Un on Sp−1,

a Sobolev test rejects H0 for large values of the test statistic

Sp−1,Mn
:=

1

n

∥∥∥∥∥
n∑
i=1

t
(p−1)
(Mn) (Ui)

∥∥∥∥∥
2

L2

=
1

n

n∑
i,j=1

〈t(p−1)
(Mn) (Ui), t

(p−1)
(Mn) (Uj)〉

=
1

n

n∑
i,j=1

Mn∑
m=1

〈t(p−1)
m (Ui), t

(p−1)
m (Uj)〉, (12)

where 〈f, g〉 denotes the inner product on L2(Sp−1, µ). Note that the second equality

in (12) follows from 〈f, g〉 = 0 for any f ∈ Ek, g ∈ El, k 6= l, due to the definition of

the Ek’s. Clearly from the discussion above we have that the circular test statistic S1,Mn

corresponds to Sp−1,Mn
with p = 2.

In the spherical case (on S2) an explicit expression for S2,Mn can be obtained using

the fact that for u,v ∈ S2,

〈t(2)
m (u), t(2)

m (v)〉 = (2m+ 1)Pm(u′v),

where Pm denotes the Legendre polynomial of order m. For p ≥ 4, similar expressions

can be obtained and involve Gegenbauer polynomials. The following result is the analog

of Proposition 4.1 in the spherical case.

Proposition 7.1. Let Mn be a sequence of integers such that Mn → ∞ with Mn =

o(n2/3) as n→∞. Then, under the null hypothesis of uniformity on S2,

Sstand
2,Mn

:=
S2,Mn

−Mn(Mn + 2)√
2Mn(Mn + 2)

converges weakly to a standard normal random variable as n→∞.

Proposition 7.1 provides a natural extension of the test φ
(n)
MRV to S2. Note that the

assumption Mn = o(n2), n→∞, in Proposition 4.1 that allows us to obtain the asymp-

totic normality of the standardized test statistic on S1 is less restrictive than the standing

assumption Mn = o(n2/3), which guarantees the asymptotic normality of its S2 counter-

part. A generalization of Proposition 7.1 to tests on Sp−1 with p ≥ 4 remains unclear.
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However most practical applications on this topic lie on S1 and S2 which are covered by

Propositions 4.1 and 7.1. Finally note that a practical test similar to the one provided

in Section 6 can readily be obtained by combining the test that rejects at the (asymp-

totic) level α when Sstand
2,Mn

> z1−α with the test based on the data–driven selection of M

provided in Jupp (2008).

8. Real data illustration

As mentioned in the Introduction, circular data are common in biological studies. In

the present section, we illustrate the proposed methods on a real data set obtained in

Giunchi and Baldaccini (2004) who studied migratory orientation of hirundines. More

precisely, the latter paper reports on a study of the orientation of the barn swallow

(Hirundo rustica), a typical diurnal trans-Saharan migrant. The major aim of their study

is to examine the role of visual and magnetic cues in juvenile swallows during their first

migratory journey. In this illustration we consider the orientations of a control group

of swallows under overcast conditions. The data plotted in Figure 6 consists of n = 66

orientations.

N

E

S

W +

Figure 6. Orientations of a control group of n = 66 swallows.

Although inspection of Figure 6 shows a very weak tendency for hirundines to choose

the north direction, non-uniformity seems however difficult to detect. We performed the

following analysis on the dataset: we considered the n samples of 65 orientations obtained

by omitting each time one observation from the sample. On each of these n samples we

performed various tests of uniformity: the Rayleigh test, the test φ
(n)
Bog of Bogdan et al.
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(2002) taking Mthr = 30 in the selection of M algorithm described in Section 6, the test

φ
(n)
MRV with Mn = 30 and the test φ̃(n) with Vthr = 5 (see Section 6 for details). In Figure

7, we provide boxplots of the asymptotic p-values of the four tests. Inspection of Figure

7 clearly reveals that the p-values of the Rayleigh test, φ
(n)
Bog and φ̃(n) are the same. This

comes from the fact that for all samples the selection of M algorithm provides M̂ = 1

so that φ
(n)
Bog is equivalent to the Rayleigh test. For all samples we also obtain that φ̃(n)

is equivalent to φ
(n)
Bog. The three tests do not reject the null hypothesis of uniformity. In

contrast, the test φ
(n)
MRV strongly rejects the null hypothesis of uniformity. As a conclusion

when using a model to describe the orientations of this group of hirundines, one should

definitely select a multimodal model.

Ray Bog MRV Tilde

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7. Boxplots of the 66 p-values of the Rayleigh test, φ
(n)
Bog, φ

(n)
MRV and φ̃(n).

Supplementary Material

Supplement to “On Sobolev tests of uniformity on the unit circle with an

extension to the unit sphere”

(doi: completed by the typesetter; .pdf). In the supplementary material, we provide some

further simulations related to the proposed test on S2 and the proofs of Propositions 3.1,

3.2 and 4.2.

http://dx.doi.org/completed by the typesetter
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Actions (ARC) of the Université libre de Bruxelles. The authors would like to thank

the Associate Editor and the two anonymous referees for their careful reading and their

insightful comments on the manuscript.

Appendix A: Proofs of Propositions 4.1 and 7.1

The appendix collects the proofs of Propositions 4.1 and 7.1. As mentioned above, the

proofs of Propositions 3.1, 3.2 and 4.2 are provided in the supplementary material. As

explained in Section 7, the Sobolev statistics we investigate in the paper may be rewritten

as

S1,Mn
=

1

n

n∑
i,j=1

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θj)〉

=
2

n

∑
1≤i<j≤n

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θj)〉+

1

n

n∑
i=1

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θi)〉

=
2

n

∑
1≤i<j≤n

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θj)〉+ 2Mn (13)

and

S2,Mn
:=

1

n

n∑
i,j=1

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Uj)〉

=
2

n

∑
1≤i<j≤n

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Uj)〉+

1

n

n∑
i=1

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Ui)〉,

=
2

n

∑
1≤i<j≤n

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Uj)〉+Mn(Mn + 2), (14)

where we used the fact that

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θi)〉 = ‖t(1)

(Mn)(Θi)‖2L2

=

Mn∑
m=1

〈t(1)
m (Θi), t

(1)
m (Θi)〉

= 2

Mn∑
m=1

cos2(mΘi) + sin2(mΘi) = 2Mn (15)
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and that

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Ui)〉 = ‖t(2)

(Mn)(Ui)‖2L2

=

Mn∑
m=1

〈t(2)
m (Ui), t

(2)
m (Ui)〉

=

Mn∑
m=1

(2m+ 1)Pm(U′iUi) =

Mn∑
m=1

(2m+ 1)Pm(1) = Mn(Mn + 2).

(16)

As a direct consequence we have that

Sstand
1,Mn

=
S1,Mn − 2Mn

2
√
Mn

=
1

n
√
Mn

∑
1≤i<j≤n

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θj)〉

=
2

n
√
Mn

Mn∑
m=1

∑
1≤i<j≤n

cos(mΘi) cos(mΘj) + sin(mΘi) sin(mΘj) (17)

and that

Sstand
2,Mn

=
S2,Mn −Mn(Mn + 2)√

2Mn(Mn + 2)

=

√
2

n
√
Mn(Mn + 2)

∑
1≤i<j≤n

〈t(Mn)(Ui), t(Mn)(Uj)〉

=

√
2

n
√
Mn(Mn + 2)

∑
1≤i<j≤n

Mn∑
m=1

(2m+ 1)Pm(U′iUj). (18)

We start now with the proof of Proposition 4.1.

Proof of Proposition 4.1. Our objective is to show that Sstand
1,Mn

is asymptotically

standard normal as n → ∞ (and Mn → ∞) under the null hypothesis of uniformity.

First note that letting Zi,m := (cos(mΘi), sin(mΘi))
′, we have that Sstand

1,Mn
in (17) can be

written as

Sstand
1,Mn

:=
2

n
√
Mn

Mn∑
m=1

∑
1≤i<j≤n

Z′i,mZj,m =:
2

n
√
Mn

Mn∑
m=1

∑
1≤i<j≤n

ρij,m.

Note that if Θi is uniform on (0, 2π], clearly, Zi,m is uniform on S1 and the appendix of

Paindaveine and Verdebout (2016) summarizes a lot of properties of the ρij,m’s in the

uniform case.
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We will now construct a martingale difference process. Define Fn` as the σ-algebra

generated by Θ1, . . . ,Θ`, and, writing En` for the conditional expectation with respect

to Fn`, we let

S1` := En`
[
Sstand

1,Mn

]
− En,`−1

[
Sstand

1,Mn

]
=

2

n
√
Mn

Mn∑
m=1

`−1∑
i=1

ρi`,m

=
1

n
√
Mn

`−1∑
i=1

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θ`)〉.

We obviously have that Sstand
1,Mn

=
∑n
`=1 S1`. By construction, the process S1` is a mar-

tingale difference process so that in order to apply the Central limit Theorem 35.12 in

Billingsley (1995) we need to show that

Lemma A.1. Letting σ2
n` = En,`−1

[
(S1`)

2
]
,
∑n
`=1 σ

2
n` converges to one in probability

as n→∞.

together with the Lindeberg condition

Lemma A.2. For any ε > 0,
∑n
`=1 E

[
(S1`)

2 I[|S1`| > ε]
]
→ 0 as n→∞.

Proof of Lemma A.1. First note that

σ2
n` = En,`−1

[
(S1`)

2
]

=
4

n2Mn
En,`−1[

Mn∑
s,t=1

`−1∑
i,j=1

ρi`,sρj`,t]

=
4

n2Mn
En,`−1[

Mn∑
s,t=1

`−1∑
i,j=1

Z′i,sZ`,sZ
′
`,tZj,t]

=
4

n2Mn

Mn∑
s,t=1

`−1∑
i,j=1

Z′i,sE[Z`,sZ
′
`,t]Zj,t

=
2

n2Mn

Mn∑
s=1

`−1∑
i,j=1

Z′i,sZj,s

=
2

n2Mn

Mn∑
s=1

`−1∑
i,j=1

ρij,s

=
1

n2Mn

`−1∑
i,j=1

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θj)〉
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Since E[ρij,s] = 0 for i 6= j and any s, it directly follows from (15) that

E[σ2
n`] =

2(l − 1)

n2

so that

n∑
`=1

E[σ2
n`] =

n∑
`=1

2(l − 1)

n2
= 1.

Therefore, it remains to show that Var[
∑n
`=1 σ

2
n`] converges to zero as n → ∞. Again

from (15) we have that

Var[

n∑
`=1

σ2
n`] = Var[

1

n2Mn

n∑
`=1

∑
1≤i<j≤(`−1)

〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θj)〉]

=
4

n4M2
n

Var[

Mn∑
s=1

∑
1≤i<j≤(n−1)

(n− j)ρij,s]

=
4

n4M2
n

E[(

Mn∑
s=1

∑
1≤i<j≤(n−1)

(n− j)ρij,s)2] (19)

Since for i < j and k < `, E[ρij,sρk`,t] = 0 unless (i, j) = (k, `) and s = t. In the latter

case we have E[ρ2
ij,s] = 1

2 . It therefore follows from (19) that

Var[

n∑
`=1

σ2
n`] =

4

n4M2
n

Mn∑
s=1

∑
1≤i<j≤(n−1)

(n− j)2E[ρ2
ij,s]

≤ 2

Mn

which is o(1) as n→∞. �

For the proof of Lemma A.2, we need the following preliminary result.

Lemma A.3. Let Θ be a random angle uniformly distributed on (0, 2π). Define

I1(a, b, c, d) = E[cos(aΘ) cos(bΘ) cos(cΘ) cos(dΘ)],

I2(a, b, c, d) := E[cos(aΘ) cos(bΘ) cos(cΘ) sin(dΘ)],

I3(a, b, c, d) := E[cos(aΘ) cos(bΘ) sin(cΘ) sin(dΘ)],

I4(a, b, c, d) := E[cos(aΘ) sin(bΘ) sin(cΘ) sin(dΘ)]

and

I5(a, b, c, d) := E[sin(aΘ) sin(bΘ) sin(cΘ) sin(dΘ)].
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Then we have that (a) Ij(a, b, c, d) = 0, j = 2, 4, for all integers {a, b, c, d}. (b) Ij(a, b, c, d) =

0, j = 1, 5, unless any of the integers {a, b, c, d} is equal to the sum of the other three

(e.g, a = b+ c+ d), or if any two pairs of {a, b, c, d} have equal sum (e.g, a+ b = c+ d).

(c) I3(a, b, c, d) = 0, unless unless any of the integers {a, b, c, d} is equal to the sum of

the other three, or if any two pairs of {a, b, c, d} have equal sum, except for the cases

{a = d, b = c} and {a = c, b = d} for which I3(a, b, c, d) = 0.

Proof of Lemma A.3. We show it for I1(a, b, c, d); the other cases are treated similarly.

By simple trigonometric identities we have that∫ 2π

0

cos(aϑ) cos(bϑ) cos(cϑ) cos(dϑ)dϑ =
sin [2π(a− b− c− d)]

2π(a− b− c− d)
+

sin [2π(a+ b− c− d)]

2π(a+ b− c− d)

+
sin [2π(a− b+ c− d)]

2π(a− b+ c− d)
+

sin [2π(a+ b+ c− d)]

2π(a+ b+ c− d)
+

sin [2π(a− b− c+ d)]

2π(a− b− c+ d)

+
sin [2π(a+ b− c+ d)]

2π(a+ b− c+ d)
+

sin [2π(a− b+ c+ d)]

2π(a− b+ c+ d)
+

sin [2π(a+ b+ c+ d)]

2π(a+ b+ c+ d)
,

and the result follows immediately. �

Proof of Lemma A.2 Applying first the Cauchy-Schwarz inequality, then the Cheby-

shev inequality (note that SRn` has zero mean), yields

n∑
`=1

E
[
(S1`)

2 I[|S1`| > ε]
]
≤

n∑
`=1

√
E
[
(S1`)4

]√
P[|S1`| > ε]

≤ 1

ε

n∑
`=1

√
E
[
(S1`)4

]√
Var[S1`].

From the proof of Lemma B1, we readily obtain that Var[S1`] = 2(` − 1)/n2, which

provides
n∑
`=1

E
[
(S1`)

2 I[|S1`| > ε]
]
≤
√

2

εn

n∑
`=1

√
(`− 1)E

[
(S1`)4

]
. (20)

Now since

2

Mn∑
m=1

ρi`,m = 〈t(1)
(Mn)(Θi), t

(1)
(Mn)(Θ`)〉,
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we have using the properties of the ρi`,s’s that

E
[
(S1`)

4
]

=
16

n4M2
n

Mn∑
s,t,u,v=1

`−1∑
i=1

E
[
ρi`,sρi`,tρi`,uρi`,v

]
+

1

n4M2
n

`−1∑
i,j=1

E
[
〈t(1)

(Mn)(Θi), t
(1)
(Mn)(Θ`)〉2〈t(1)

(Mn)(Θj), t
(1)
(Mn)(Θ`)〉2

]
=

16

n4M2
n

Mn∑
s,t,u,v=1

`−1∑
i=1

E
[
ρi`,sρi`,tρi`,uρi`,v

]
+

4(`− 1)2

n4
. (21)

In the sequel denote by M(n)
3 the set of integers (a, b, c, d) ∈ (1, . . . ,Mn)4 such that any

of the integers {a, b, c, d} is equal to the sum of the other three and by M(n)
2 the set of

integers (a, b, c, d) ∈ (1, . . . ,Mn)4 such there exists two pairs in {a, b, c, d} that have equal

sum. Since from Section 3 in Knessl and Keller (1990), it follows that #(M(n)
2 ∆M(n)

3 ) =

O(M3
n) (∆ denotes the difference of two sets) as Mn →∞, the boundedness of the ρi`,s’s

and Lemma A.3 entail that from (21) we have that

E
[
(S1`)

4
]

=
64

n4M2
n

Mn∑
s,t,u,v=1

`−1∑
i=1

E
[
ρi`,sρi`,tρi`,uρi`,v

]
+

4(`− 1)2

n4

=
64

n4M2
n

∑
(s,t,u,v)∈M(n)

2 ∆M(n)
3

`−1∑
i=1

E
[
ρi`,sρi`,tρi`,uρi`,v

]
+

4(`− 1)2

n4

≤ (`− 1)Cn
n4M2

n

+ +
4(`− 1)2

n4
,

where Cn = O(M3
n). Therefore, we obtain that for some constant C that

n∑
`=1

E
[
(S1`)

2 I[|S1`| > ε]
]
≤
√

2

εn

n∑
`=1

√
(`− 1)E

[
(S1`)4

]
≤
√

2

εn3

n∑
`=1

√
Cn(`− 1)2

M2
n

+ 4(`− 1)3

≤
√

2

εn3

n∑
`=1

(
C

1/2
n (`− 1)

Mn
+ 4(`− 1)3/2) = O(M1/2

n n−1),

which is o(1) provided that Mn = o(n2).

�
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We now move to the proof of Proposition 7.1.

Proof of Proposition 7.1. In this proof, we use the same techniques as in the proof of

Proposition 4.1. We have that Sstand
2,Mn

in (18) may be rewritten as

Sstand
2,Mn

=

√
2

n
√
Mn(Mn + 2)

n∑
`=1

`−1∑
i=1

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(U`)〉

=:

n∑
`=1

S2`, (22)

where S2` is a martingale difference process. To obtain the asymptotic normality result

we therefore need to obtain the following lemma.

Lemma A.4. Letting σ2
n` = En,`−1

[
(S2`)

2
]
,
∑n
`=1 σ

2
n` converges to one in probability

as n→∞.

together with the Lindeberg condition

Lemma A.5. For any ε > 0,
∑n
`=1 E

[
(S2`)

2 I[|S2`| > ε]
]
→ 0 as n→∞.

The proof of Lemma A.4 follows along the same lines as the proof of Lemma A.1 using

the fact that

σ2
n` =: En,`−1

[
(S2`)

2
]

=
2

n2Mn(Mn + 2)
En,`−1

[ `−1∑
i,j=1

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(U`)〉〈t(2)

(Mn)(Uj), t
(2)
(Mn)(U`)〉]

=
2

n2Mn(Mn + 2)

`−1∑
i,j=1

〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Uj)〉 (23)

has expectation 2(`−1)/n2 as in Lemma A.1. We directly turn to the proof of Lemma A.5.

Proof of Lemma A.5. Following the same lines as in the proof of Lemma A.2, we need

to show that
n∑
`=1

√
E
[
(S2`)4

]√
Var[S2`]

is o(1) as n→∞. First note that from (23), we easily obtain that

Var[S2`] = E[S2
2`] = E[σ2

n`] =
2(`− 1)

n2
.
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Now letting ρij := 〈t(2)
(Mn)(Ui), t

(2)
(Mn)(Uj)〉 and using the properties of the inner products

U′iUj summarized in Lemma A1 of Paindaveine and Verdebout (2016) we have that

E
[
(S2`)

4
]

=
4

n4M2
n(Mn + 2)2

`−1∑
i,j,k,m=1

E[ρi`ρj`ρk`ρm`]

=
4

n4M2
n(Mn + 2)2

(

`−1∑
i=1

E[ρ4
i`] +

`−1∑
i,j=1

E[ρ2
i`ρ

2
j`])

=
4

n4M2
n(Mn + 2)2

`−1∑
i=1

E[ρ4
i`] +

4(`− 1)2

n4
. (24)

Now we have that

E[ρ4
i`] = E[〈t(2)

(Mn)(Ui), t
(2)
(Mn)(U`)〉4]

=

Mn∑
s,t,u,v=1

(2s+ 1)(2t+ 1)(2u+ 1)(2v + 1)E[Ps(U
′
iU`)Pt(U

′
iU`)Pu(U′iU`)Pv(U

′
iU`)]

(25)

It follows from Lemma A1 in Paindaveine and Verdebout (2016) that on S2, U′iUj is

uniformly distributed on [−1, 1]. Using Theorem 2 in Lohöfer (1991), we have for s ≥ 1

that |Ps(x)| ≤ Γ(1/4)
πs1/4(1−x2)1/8

for x ∈ (−1, 1). We therefore have from (25) that for some

constant C

E[ρ4
i`] ≤ C(

Mn∑
s=1

(2s+ 1)s−1/4)4 =: Cn,

where Cn = O(M7
n). It follows from (24) that

E
[
(S2`)

4
]
≤ 4Cn(`− 1)

n4M2
n(Mn + 2)2

+
4(`− 1)2

n4

and therefore that for some constant C

n∑
`=1

√
E
[
(S2`)4

]√
Var[S2`] ≤

C

n3

n∑
`=1

√
Cn(`− 1)2

M2
n(Mn + 2)2

+ (`− 1)3

≤ C

n3

n∑
`=1

(
C

1/2
n (`− 1)

Mn(Mn + 2)
+ (`− 1)3/2) = O(M3/2

n n−1),

which is o(1) as n→∞ provided that Mn = o(n2/3) �
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